Skip to main content
Log in

Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the effects of a non-uniform magnetic field on the hydrodynamic and thermal behavior of ferrofluid flow in a wavy channel by 3D numerical simulation. The wavy surfaces at the top and bottom of the channel are heated by constant heat fluxes. Moreover, the sidewalls are adiabatic. In the wavy section, in the perpendicular direction of the main flow, the magnetic field that linearly varies along the direction of the main flow is applied. The mathematical model that is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics is used for the problem formulation. The results indicate that the wavy wall enhances the heat transfer rate on the bottom of the channel in comparison with the plain wall, while it does not have any significant effect on the top wall where the natural convection is weak. Furthermore, it can be found that the influence of the magnetic field on the flow field and heat transfer in the channel with the wavy walls is greater than one for the channel with the plain walls. This is due to the elimination of the recirculation zones in the sinusoidal cavities of the wavy walls by applying the magnetic field. The rise of the magnetic gradient value from 0 to 1.5 × 105 increases the skin-friction factors on the top and bottom wavy walls by factors of 11 and 1.6, respectively. In addition, it changes the Nusselt number 40% and 300% for the bottom and top walls, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

xy Cross-section side of channel (m)

B :

Magnetic field induction (T)

C f :

Skin-friction coefficient (\(\tau_{\text{w}} /1/2\rho_{\text{nf}} W_{0}^{2}\))

c p :

Specific heat at constant pressure (J kg−1 K)

d :

Particle diameter (m)

g :

Gravitational acceleration (m s−2)

G :

Magnetic field gradient (A m−2)

Gr :

Grashof number (\(g\beta_{\text{nf}} q^{\prime \prime } \rho_{\text{nf}}^{2} a^{4} /k_{\text{nf}} \mu_{\text{nf}}^{2}\))

h :

Heat transfer coefficient (W m−2K)

H :

Magnetic field intensity (A m−1)

J :

Electric current density (A m−2)

k :

Thermal conductivity (W m−1 K)

k B :

Boltzmann constant (= 1.3806503 × 10−23 J K−1)

L :

Langevin function

m :

Particle magnetic moment (A m−2)

M :

Magnetization (A m−1)

M s :

Saturation magnetization (A m−1)

Nu :

Nusselt number (\({{ha} \mathord{\left/ {\vphantom {{ha} {k_{\text{nf}} = q^{{\prime \prime }} a/k_{\text{nf}} (T_{\text{wall}} - T_{\text{bulk}} )}}} \right. \kern-0pt} {k_{\text{nf}} = q^{{\prime \prime }} a/k_{\text{nf}} (T_{\text{wall}} - T_{\text{bulk}} )}}\))

P :

Pressure (Pa)

q″:

Heat flux (W m−2)

Re :

Reynolds number (\({{\rho_{\text{nf}} W_{0} a} \mathord{\left/ {\vphantom {{\rho_{\text{nf}} W_{0} a} {\mu_{\text{nf}} }}} \right. \kern-0pt} {\mu_{\text{nf}} }}\))

T :

Temperature (K)

T 0 :

Inlet flow temperature (K)

V = (u, v, w):

Velocity field (m s−1)

W 0 :

Inlet velocity (m s−1)

X :

Axis in Cartesian coordinates

Y :

Axis in Cartesian coordinates

Z :

Axis in Cartesian coordinates

β :

Thermal expansion coefficient (1 K−1)

μ :

Dynamic viscosity (kg m−1 s)

μ 0 :

Magnetic permeability of vacuum (= 4π × 10−7 Tm A−1)

μ B :

Bohr magneton (= 9.27 × 10−24 A m−2)

ξ :

Langevin parameter

ρ :

Density (kg m−3)

σ :

Electrical conductivity (s m−1)

τ w :

Wall shear stress (Pa)

ϕ :

Particles volume fraction

f:

Base fluid

nf:

Nanofluid

p:

Particle

References

  1. Darzi A, Farhadi M, Sedighi K. Numerical study of the fin effect on mixed convection heat transfer in a lid-driven cavity. Proc Inst Mech Eng Part C J Mech Eng Sci. 2011;225(2):397–406.

    CAS  Google Scholar 

  2. Das B, Giri A. Mixed convective heat transfer from vertical fin array in the presence of vortex generator. Int J Heat Mass Transf. 2015;82:26–41.

    Google Scholar 

  3. Mokhtari M, Gerdroodbary MB, Yeganeh R, Fallah K. Numerical study of mixed convection heat transfer of various fin arrangements in a horizontal channel. Eng Sci Technol Int J. 2016;20:1106–14.

    Google Scholar 

  4. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131:1106–16.

    Google Scholar 

  5. Umavathi J, Shekar M. Mixed convective flow of immiscible fluids in a vertical corrugated channel with traveling thermal waves. J King Saud Univ Eng Sci. 2014;26(1):49–68.

    Google Scholar 

  6. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    CAS  Google Scholar 

  7. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.

    CAS  Google Scholar 

  8. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    CAS  Google Scholar 

  9. Mehrizi AA, Farhadi M, Afroozi HH, Sedighi K, Darz AR. Mixed convection heat transfer in a ventilated cavity with hot obstacle: effect of nanofluid and outlet port location. Int Commun Heat Mass Transf. 2012;39(7):1000–8.

    CAS  Google Scholar 

  10. Fersadou I, Kahalerras H, El Ganaoui M. MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comput Fluids. 2015;121:164–79.

    Google Scholar 

  11. Hussain S, Mehmood K, Sagheer M. MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. J Magn Magn Mater. 2016;419:140–55.

    CAS  Google Scholar 

  12. Selimefendigil F, Öztop HF. Analysis of MHD mixed convection in a flexible walled and nanofluids filled lid-driven cavity with volumetric heat generation. Int J Mech Sci. 2016;118:113–24.

    Google Scholar 

  13. Job VM, Gunakala SR. Mixed convection nanofluid flows through a grooved channel with internal heat generating solid cylinders in the presence of an applied magnetic field. Int J Heat Mass Transf. 2017;107:133–45.

    CAS  Google Scholar 

  14. Haq RU, Hamouch Z, Hussain S, Mekkaoui T. MHD mixed convection flow along a vertically heated sheet. Int J Hydrog Energy. 2017;42:15925–32.

    Google Scholar 

  15. Öztop HF, Sakhrieh A, Abu-Nada E, Al-Salem K. Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42–51.

    Google Scholar 

  16. Javed T, Siddiqui MA. Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact. J Mol Liq. 2018;249:831–42.

    CAS  Google Scholar 

  17. Wang GV, Vanka S. Convective heat transfer in periodic wavy passages. Int J Heat Mass Transf. 1995;38(17):3219–30.

    CAS  Google Scholar 

  18. Xie G-N, Wang Q-W, Zeng M, Luo L-Q. Numerical investigation of heat transfer and fluid flow characteristics inside a wavy channel. Heat Mass Transf. 2007;43(7):603–11.

    Google Scholar 

  19. Rashidi MM, Nasiri M, Khezerloo M, Laraqi N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater. 2016;401:159–68.

    CAS  Google Scholar 

  20. Darzi AAR, Farhadi M, Lavasani AM. Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure. Chem Eng Res Des. 2016;111:294–304.

    Google Scholar 

  21. Yamaguchi H. Engineering fluid mechanics. Berlin: Springer; 2008.

    Google Scholar 

  22. Jafari A, Tynjälä T, Mousavi S, Sarkomaa P. Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique. Int J Heat Fluid Flow. 2008;29(4):1197–202.

    CAS  Google Scholar 

  23. Li Q, Xuan Y. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid Sci. 2009;33(4):591–6.

    CAS  Google Scholar 

  24. Aminfar H, Mohammadpourfard M, Kahnamouei YN. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. J Magn Magn Mater. 2011;323(15):1963–72.

    CAS  Google Scholar 

  25. Aminfar H, Mohammadpourfard M, Mohseni F. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater. 2012;324(5):830–42.

    CAS  Google Scholar 

  26. Aminfar H, Mohammadpourfard M, Kahnamouei YN. Numerical study of magnetic field effects on the mixed convection of a magnetic nanofluid in a curved tube. Int J Mech Sci. 2014;78:81–90.

    Google Scholar 

  27. Wang L, Wang Y, Yan X, Wang X, Feng B. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. Int Commun Heat Mass Transf. 2016;72:23–8.

    CAS  Google Scholar 

  28. Mousavi SM, Farhadi M, Sedighi K. Effect of non-uniform magnetic field on biomagnetic fluid flow in a 3D channel. Appl Math Model. 2016;40(15):7336–48.

    Google Scholar 

  29. Mousavi SM, Farhadi M, Sedighi K. A computational study of biomagnetic fluid flow in a channel in the presence of obstacles under the influence of the magnetic field generated by a wire carrying electric current. Eur J Comput Mech. 2018;27(4):302–21.

    Google Scholar 

  30. Mousavi SM, Jamshidi N, Rabienataj-Darzi A. Numerical investigation of the magnetic field effect on the heat transfer and fluid flow of ferrofluid inside helical tube. J Therm Anal Calorim. 2019;137(5):1591–601.

    CAS  Google Scholar 

  31. Rosensweig RE. Ferrohydrodynamics. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

  32. Shercliff JA. Textbook of magnetohydrodynamics. Pergamon Press; 1965.

  33. Tzirtzilakis E. A mathematical model for blood flow in magnetic field. Phys Fluids. 2005;17:077103.

    Google Scholar 

  34. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    CAS  Google Scholar 

  35. Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    CAS  Google Scholar 

  36. Mahmoudi AH, Pop I, Shahi M, Talebi F. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput Fluids. 2013;72:46–62.

    CAS  Google Scholar 

  37. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):e119–23.

    Google Scholar 

  38. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    CAS  Google Scholar 

  39. Dehghani MS, Toghraie D, Mehmandoust B. Effect of MHD on the flow and heat transfer characteristics of nanofluid in a grooved channel with internal heat generation. Int J Numer Meth Heat Fluid Flow. 2019;29:1403–31.

    Google Scholar 

  40. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Google Scholar 

  41. Mousavi SM, Darzi AAR, Akbari OA, Toghraie D, Marzban A. Numerical study of biomagnetic fluid flow in a duct with a constriction affected by a magnetic field. J Magn Magn Mater. 2019;473:42–50.

    CAS  Google Scholar 

  42. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: single-phase and two-phase approaches. Comput Math Appl. 2019;77(3):662–92.

    Google Scholar 

  43. Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Biglarian, M., Darzi, A.A.R. et al. Heat transfer enhancement of ferrofluid flow within a wavy channel by applying a non-uniform magnetic field. J Therm Anal Calorim 139, 3331–3343 (2020). https://doi.org/10.1007/s10973-019-08650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08650-6

Keywords

Navigation